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1 Introduction

As modern applications increasingly depend on large datasets that exceed the capabilities of single-server
environments, distributed architectures have become essential for efficient RDF Knowledge Graph management
and SPARQL query optimization. The SPARQL-ML project builds on these foundations by incorporating
machine learning techniques to enhance query performance in both centralized and distributed settings. To
ensure seamless integration of these techniques, a well-defined system architecture is necessary, outlining the
interaction between components and services responsible for data processing and optimization.

This deliverable, D1.2, builds upon the technical requirements established in D1.1 [3] by defining the
conceptual architecture that underpins the entire project. The system architecture developed by the project
partners specifies the components and services required for machine learning-driven SPARQL query optimization,
detailing their roles, interactions, and overall data flow. This architectural framework serves as the foundation
for subsequent work packages, providing a structured approach to implementing and evaluating the proposed
methods.

2 SPARQL-ML Architecture

In recent years, the emergence of large RDF Knowledge Graphs [2], such as the 15 billion triples in the
Wikidata Knowledge Graph [6] used by Google’s search engine and the 148 billion triples in UniProt [1], has
presented a considerable challenge in efficiently querying these vast repositories. Traditional query optimization
methods have not fully explored the potential of modern deep learning techniques for scalable execution of
SPARQL queries over massive and distributed RDF Knowledge Graphs. The current landscape highlights a
growing necessity to explore contemporary Al and machine learning-based solutions to enhance SPARQL query
processing over both centralized and distributed RDF Knowledge Graphs. As data volumes continue to increase
and become more widely distributed, organizations face challenges in optimizing the use of their data assets.

Existing distributed solutions often cater to centralized storage or static data distribution, resulting in
suboptimal query performance. Consequently, there is a pressing demand for advanced data distribution
strategies and federated query engines capable of handling substantial amounts of data with high efficiency. Our
objective is to elevate data management to a new standard, capitalizing on high-performance, scalability, and
efficient handling of semantic data to meet the evolving demands of the market.

The architecture for SPARQL-ML is shown in Figure 1. Starting from the bottom, we will first construct
Knowledge Graphs (KGs) using the Resource Description Framework format (RDF), a W3C standard for the
representation of knowledge on the Web [4]. The source data will be data which is currently missing formal
semantics and exists in structured, semi-structured or unstructured formats. We then distribute the resulting RDF
KGs among different data storage solutions, i.e., triple stores with public SPARQL endpoints, thus allowing users
to query them by means of SPARQL, the W3C standard for querying RDF data [5]. The triplestores will also host
the data from the project use-cases which are already represented as RDF KGs. The triplestores will be able to
exchange the data dynamically, to exploit data locality for maximizing and balancing the amount of computation
in a single storage solution. The triplestores will use machine learning (ML) techniques particularly deep
reinforcement learning (DRL) in order to optimize the incoming SPARQL queries, for improved performance.
The user can query the distributed triplestores directly or via the SPARQL federation engine, which makes use
of the federation index which is calculated beforehand, based on the profile of each triplestore.
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Figure 1: SPARQL-ML Architecture

2.1 Knowledge Graph Construction Layer

In this layer we will convert data relevant to the business use cases into Knowledge Graphs (KGs), based on the
Resource Description Framework format (RDF), a W3C standard for the representation of knowledge on the
Web. The large number of datasets required by the use cases will each be hosted in triplestores, thus allowing the
users to query them by means of SPARQL, the W3C standard for querying RDF data. The conversion will be
enabled by the integration between the Corporate Memory (CMEM) data management platform and Tentris as a
triplestore. The conversion will encompass structured, semi-structured and unstructured data, of interest for the
project use-cases.

2.2 Machine Learning Layer

In this layer we will use our existing solutions for automatic data distribution between storage nodes (in a
clustered version of the data storage solution) and for dynamic data exchange between the nodes, based on usage
load information. This dynamic exchange of data can be a deletion, an insertion or the insertion of a replicated
chunk of data from another storage solution. The decision of dynamic exchange will be mostly based on the
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monitoring of the storage solutions, in particular on the federated queries that were issued to the distributed
storage solution.

Each triplestore will implement an ML-based solution for SPARQL query optimization of the incoming
queries. More specifically, we aim to apply deep reinforcement learning (DRL) techniques to optimize the
SPARQL query processing in triplestores, motivated by the improved performance of using DRL in optimizing
relational database queries. The main goal of this component will be to select an optimal join-order in the
query plan that leads to significant performance improvement in terms of query execution time. The proposed
optimization methods will be implemented in Tentris, a well-known state-of-the-art triplestore for SPARQL
query processing, freely available from the DICE research group at University of Paderborn. In addition,
OpenLink will also adopt the proposed methods in their Virtuoso RDF Quad Store. We will use both real-world
and synthetic SPARQL benchmarks to evaluate the proposed optimization algorithms to be used in this layer.

2.3 Federation Layer

In this layer, we will use our SPARQL query federation engine developed in a previous research project (3DFed).
The join ordering of the plans it generates is based on an estimation of the cardinality of the triple patterns and
the joins contained in the input query. The decision between the join implementation to use (bind or symmetric
hash join) is based on the join cost estimation function it implements. In addition, it will implement means to
keep its index up-to-date based on regular intervals as well as at fixed times.

2.4 Application Layer

In this layer, we will provide user friendly interfaces for querying the distributed data hosted by different data
storage solutions.

3 Architecture for Deep Reinforcement Learning for SPARQL

In this section we present the architecture for SPARQL query optimization using Deep Reinforcement Learning
(DRL). Figure 2 depicts the DRL architecture which will be applied in our use-case as follows.

Reward r
Agent
state Take action a Environment
S
parameter 6

Observe state s

Figure 2: The DRL-based SPARQL Query Optimization
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3.1 Agent

Deep Reinforcement Learning Model: This component represents the DRL agent trained to optimize SPARQL
queries by making decisions based on the state it observes.

3.2 State
Current Query Configuration: This is the input to the agent that represents the current unoptimized query plan

with a set of joins. Basically, the set of states are the joins that need to be performed in the current SPARQL
query to get the complete results.

3.3 Action
Optimization Decisions: These are the potential actions the agent can take to optimize the SPARQL query plan,

like the selection of a join from the remaining set to be executed for the query under execution. It also includes
the execution of the selected join from the given SPARQL query.

3.4 Environment

Triplestore Database System: The component where the SPARQL query gets executed and which evaluates the
actions taken by the agent, returning a performance measure like Tentris or Virtuoso, etc.

3.5 Reward

Performance Feedback: The feedback value provided to the agent, often related to the efficiency of the executed
action in terms of reduced execution time. The negative of execution time value act as a reward for the DRL
agent.

3.6 Deep Neural Network (DNN)

Q-value Function Approximation: The neural network within the agent tasked with learning the Q-value function,
predicting the expected rewards for actions taken in various states.

3.7 Policy

Action Selection Strategy: The DQN policy directs the agent to select the action with the highest predicted
Q-value, indicating the action’s potential for earning the highest cumulative reward over time.

This structured flow encapsulates the iterative learning process the DRL agent undergoes, continuously
refining its policy to achieve optimal SPARQL query performance.

4 Conclusion

This deliverable outlines the conceptual architecture of SPARQL-ML, focusing on integrating machine learning
techniques to optimize SPARQL query execution over centralized and federated RDF Knowledge Graphs. The
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proposed architecture incorporates multiple layers, including knowledge graph construction, deep reinforcement
learning-based query optimization, and a federation engine for distributed query processing.

By leveraging Deep Reinforcement Learning, the system aims to enhance query execution efficiency by
dynamically selecting optimal query plans. The architecture also includes a robust data distribution mechanism,
ensuring efficient query execution across multiple triplestores while minimizing network overhead. The
federation engine extends these capabilities to distributed RDF stores, enabling seamless and scalable SPARQL
query execution.

This work will focus on implementing and evaluating the proposed architecture using real-world and
synthetic benchmarks. The outcomes of this project will contribute to advancing SPARQL query processing by
introducing ML-driven optimizations, improving performance, and making large-scale RDF data more accessible
for complex queries.
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